
FRIEDBERG-MUCHNIK THEOREM

PATRICK STEVENS, WITH TIP OF THE HAT TO DR THOMAS FORSTER

https://www.patrickstevens.co.uk/misc/FriedbergMuchnik/FriedbergMuchnik.pdf

1. Introduction

We consider Turing machines which query an oracle O: that is, they come equipped
with an extra instruction “call the oracle with this input”, where a call to the oracle is
simply a test for membership in O.

We may supply different oracles to the same Turing machine, and potentially get
different results: for example, the Turing machine which has as its only instruction
“output the result of calling the oracle on my input” precisely mimics the oracle.

Recall that a set A is semi-decidable if there is a Turing machine T such that for all
n ∈ N, T (n) halts iff n ∈ A.

Theorem 1 (Friedberg-Muchnik theorem). There are semidecidable sets A and B
such that for all Turing machines T which may query an oracle, the following fail
to be equivalent:

(1) T -querying-B doesn’t halt with output 0
(2) T -querying-B has input in A

and the following fail to be equivalent:
(1) T -querying-A doesn’t halt with output 0
(2) T -querying-A has input in B

That is, we can find two semidecidable sets A and B such that neither allows a Turing
machine to decide the other, where by “T decides A” we mean “T halts and outputs 0
iff its input is not in A, and it halts and outputs 1 iff its input is in A”. (Equivalently,
T is a machine which computes the characteristic function of A.)

2. Proof

We can enumerate all the Turing machines which call an oracle; write [n]X for the
nth Turing machine in the enumeration, calling oracle X.

What would it mean for the Friedberg-Muchnik theorem to hold? We would be able
to find en (resp. fn) that witness in turn that the nth Turing machine doesn’t manage
to decide A in the presence of B (resp. B in the presence of A).

That is, it would be enough to show that:

Date: 5th February 2016.
1

https://www.patrickstevens.co.uk/misc/FriedbergMuchnik/FriedbergMuchnik.pdf


2 PATRICK STEVENS, WITH TIP OF THE HAT TO DR THOMAS FORSTER

Theorem 2. There are semidecidable sets A, B such that for all n ∈ N:
• there is en ∈ N such that

– en ∈ A but [n]B(en) halts with output 0, or
– en ̸∈ A but [n]B(en) fails to halt, or halts at something other than 0

• there is fn ∈ N such that
– fn ∈ B but [n]A(fn) halts with output 0, or
– fn ̸∈ B but [n]A(fn) fails to halt, or halts at something other than 0

The way we are going to do this is as follows. We’ll construct our A and B iteratively,
starting from the empty set and only ever adding things in to our current attempts.

For each n ∈ N, we can make an infinite list of “possible” witnesses: numbers which
might eventually be our choice for en. We don’t care what these guesses are at the
moment, but we just insist that they be disjoint and sorted into increasing order. Write

Gi = {g
(i)
1 , g

(i)
2 , . . . }

for the set of possibilities for ei, and

Hi = {h
(i)
1 , h

(i)
2 , . . . }

for the set of possibilities for fi. (I emphasise again that we don’t assume any properties
of these numbers, other than that g

(i)
m and h

(i)
m are increasing with m, and that no

g
(i)
m , g

(j)
n , h

(k)
p , h

(l)
q are equal.)

Now, at time-step 0, we have no information about what’s going to be in A and B,
so let

A0 = B0 = ∅
Every Gi and Hi is looking for a witness among its members. We assign a priority

order to them:
G1 > H1 > G2 > H2 > . . .

The idea is that the high-priority sets quickly decide on their witness, and the lower-
priority sets get to choose their witness subject to not being allowed to mess up any
higher-priority set’s decision.

At time-step t, we’ve already built At−1, Bt−1 as our best guesses at A and B. We
seek an ei for any Gi which hasn’t got one (for 1 ≤ i ≤ t), and then we can work on
finding fi for the Hi next.

Run the machines [i]Bt−1 for i = 1, 2, . . . , t, for t steps each, each on input g
(i)
1 . This

will approximate [i]B, because Bt−1 ⊆ B = ∪∞
t=1Bt, but it is by no means exactly what

we need yet.
• If our machine [i]Bt−1 ever attempts to query its oracle on a value greater than

max(Bt−1), we declare that the machine crashes for this round, and sits out.
Indeed, Bt−1 is incomplete at this point as a reflection of B - we only have
information about it up to max(Bt−1) - so it would be useless to try and in-
fer information about B from parts of Bt−1 which are even bigger than that
maximum.



FRIEDBERG-MUCHNIK THEOREM 3

• If [i]Bt−1 halts at something other than 0, then it’s no use to us: it can’t possibly
be a witness we can add to B, because such witnesses ei must satisfy “[i]B(ei)
halts at 0”. So Gi will sit out of this round.

• If [i]Bt−1 fails to halt in the allotted t steps, it is likewise not something we can
add to B, because we can’t (yet) even prove that the machine halts on this input,
let alone that it halts on 0. So Gi will again sit out of this round.

• But if [i]Bt−1 halts and outputs 0 in the allotted t steps, we’re in business:
for some collection of i, we have found some things (g(i)

1 ) that might serve as
witnesses. Throw each of these into Bt−1 to make Bt.

OK. Now Gi is happy, but remember we might have had a side-effect here, because if
(for the sake of argument) G1 had already decided on its witness during time-step t − 1,
it made that decision with reference to Bt−1 and not with reference to Bt. The fact that
g

(i)
1 is now in our B-guess may alter the computation that [1]Bt−1 performed to decide

on its witness. (This is because [1]Bt−1(e1) is not in general equal to [1]Bt(e1).)
How can we ensure that in fact G1’s witness isn’t broken? Well, [1] is a finite machine

which we have run for a finite time, so it can only have asked the oracle for values up to
some finite number β1 before it halted. So if we can make sure we only ever added g

(i)
n

to Bt−1 if it was above β1, then we haven’t actually changed B from the point of view of
[1]. Even after Bt−1 becomes Bt, the computation [1]Bt−1 performs is exactly the same
as the computation [1]Bt performs, because the oracles are the same on all points [1]
might query.

Therefore, after adding something from Gi to make Bt, we need to delete all numbers
below βi from all lower-priority Gj and Hj . (This is easy to do because of our stipulation
that the Gj be listed with elements in ascending order.) That way, no Gj will never
even consider any element that breaks a higher-priority Gi.

Once we’ve found the G-witnesses at time-step t, we can find the H-witnesses in
exactly the same way; and finally, we move on to time-step t + 1.

2.1. Problem. This procedure works pretty well, but there’s a problem with it. You
might like to meditate on this for a few minutes, because it’s revealed in the next
paragraph.

The problem is simply that while no lower-priority entry can break a higher-priority
one, the reverse might happen! It might be that G1, G2, G3 take ten steps of execution be-
fore halting, while G4 halts after just one step and so decides on its witness immediately
(that is, at time t = 4, as opposed to G1’s t = 10). Subsequently, G1 will decide on its
witness, and the act of throwing its witness into B might break G4’s choice. Remember
that G4 only eliminated breaking-values from lower-priority Gj , not the higher-priority
G1. (Allowing it to eliminate breaking-values from higher-priority sets could cause the
entire protocol to enter an infinite loop, with G1 and G4 each invalidating the results of
the other on successive time-steps.)

However, this isn’t actually too much of a problem. Since G1 can only ever decide
on its witness once (being the highest-priority), that means H1 will only ever need to
decide twice; G2 only ever needs to decide at most four times (it could be first to pick its
witness, then H1 overrules it, then it picks again, then G1 overrules it and H1, then it



4 PATRICK STEVENS, WITH TIP OF THE HAT TO DR THOMAS FORSTER

picks again, then H1 overrules it, and finally it picks again). In general, the ith element
of the priority order can only be overruled 2i − 1 times.

So if Gi is overruled, we can just keep churning through the procedure, chucking more
and more elements into B; Gi can only be overruled finitely many times, and it has
infinitely many elements in its list to play with, so eventually it will work its way into a
position when it can never be overruled.

2.2. Final problem. OK, this works fine if every Gi eventually finds a witness. But
there’s another case: G1 may never find a witness. For example, [1]Bt(g(1)

1 ) may never
halt, or it may halt but output the value 1 instead of 0 (so the protocol sees it as
“uninteresting” and just repeatedly tells G1 to sit out of the round).

But remember that we’re trying to construct a witness that a certain equivalence
fails, and so far we’ve been constructing witnesses that it fails in one of its directions.
(Remember: the equivalence we want to fail is that T B halts with 0 iff it has input not
in A.) We could still win by finding e1 such that [1]B(e1) fails to halt at 0 despite not
being in A. And look! We’ve precisely got one of those elements, and it’s g

(1)
1 .

3. Summary

The output of this procedure is a pair of sets
A = ∪∞

t=1At, B = ∪∞
t=1Bt

which are semi-decidable (because we built them as a union of finite sets At, Bt). For
each Turing machine [i]X , we have a witness en, such that:

• either [i]B(en) halts with output 0 and en ∈ A, or
• [i]B(en) fails to halt, or halts with output not equal to 0, and en ̸∈ A.

(This can be proved by induction: if en is a witness at time t and it is never overruled,
then it remains a witness when we pass to B, because by construction its computation
doesn’t change on passing to B.)

That is, no Turing machine [i]B decides A.
Likewise, no Turing machine [i]A decides B.


	1. Introduction
	2. Proof
	2.1. Problem
	2.2. Final problem

	3. Summary

