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1. Introduction

Theorem 1.1 (Tennenbaum’s Theorem). Let M be a countable non-standard model
of Peano arithmetic, whose carrier set is N. Then it is not the case that + and ×
have decidable graphs in the model.

Notation. We will use the notation {e} to represent the eth Turing machine. e is consid-
ered only to be a standard integer here. For example, we might view the Gödel numbering
scheme as being “convert from ASCII and then interpret as a Python program”.

Remark. How might our standard Turing machine refer to a nonstandard integer? The
ground set of our nonstandard model is N: every nonstandard integer has a standard
one which represents it in N. Perhaps 4 ∈ N is the object that the nonstandard model
M thinks is the number 7, for instance. So the way a Turing machine would refer to the
number 7-in-the-model is to use 4 in its source code.

What does it mean for + to have a decidable graph? Simply that there is some
(standard) natural n such that, when we unpack n into instructions for running a Turing
machine, we obtain a machine that takes three naturals (that is, standard naturals) a, b, c
and outputs 1 iff, when we take the referents a′, b′, c′ of a, b, c in the model M, it is true
that a′ +M b′ = c′.

Example. A strictly standard-length program may halt in nonstandard time, when in-
terpreted in a nonstandard model. Indeed, fix some nonstandard “infinite” n (i.e. n is
not a standard natural). Then the following program halts after n steps.
ans = 0;
for i = 1 to n:

ans := ans + 1;
end
HALT with output ans;

2. Overview of the proof

The proof est omnis divisa in partes tres.
(1) In any model, there is some pair of semidecidable but recursively inseparable

sets.
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(2) We can use these to create an undecidable set of true standard naturals which
can, in some sense, be coded up into a (nonstandard) natural in our model.

(3) If + and × were decidable, then the coding process would produce an object
which would let us decide the undecidable set; contradiction.

3. Existence of recursively inseparable sets

This is fairly easy. Take A = {e : {e}(e) ↓= 0} and B = {e : {e}(e) ↓> 0}, where ↓=
means “halts and is equal to”, and ↓> means “halts and is greater than”. Recall that e
must be standard.

Now, suppose there were a (standard) integer n such that {n} were the indicator
function on set X, where X ∩ B = ∅ and A ⊆ X. Then what is {n}(n)? If it were
0, then n is not in X, so n is not in A and so {n}(n) doesn’t halt at 0. That’s a
contradiction. If it were 1, then n is in X and hence is not in B, so {n}(n) doesn’t halt
at something bigger than 0; again a contradiction.

So we have produced a pair of sets which are both semidecidable but are recursively
inseparable, in the sense that no standard integer n has {n} deciding a superset X of
A where X ∩ B = ∅. (This is independent of the model of PA we were considering; it’s
purely happening over the ground set.)

4. Coding sets of naturals as naturals

We can take any set of (possibly nonstandard) naturals and code it as a (possibly
nonstandard) natural, as follows. Given {ni : i ∈ I}, code it as

∑
i∈I 2ni . If + and ×

are decidable, then this is a decidable coding scheme. (The preceding line is going to be
where our contradiction arises, right at the end of the proof!)

Notice that if I is “standard-infinite” (that is, it contains nonstandardly-many el-
ements) then the resulting code is nonstandard. Additionally if any ni is strictly-
nonstandard.

5. Undecidable set in M

Take our pair of recursively inseparable semidecidable sets: A and B. (We constructed
them explicitly earlier, but now we don’t care what they are.) Recalling a theorem that
being semidecidable is equivalent to being a projection of a decidable set, write A for
a decidable set such that (∃y)[(n, y) ∈ A] if and only if n ∈ A, and similarly for B.
(The quantifiers range over N, because A and B consist only of standard naturals, being
subsets of the ground set.)

By their recursive-inseparability, they are in particular disjoint, so we have
(∀n)[(∃x)(⟨n, x⟩ ∈ A) → ¬(∃y)(⟨n, y⟩ ∈ B)]

where the quantifiers all range over N. Equivalently,
(∀n)(∀x)(∀y)(¬⟨n, x⟩ ∈ A ∨ ¬⟨n, y⟩ ∈ B)

If we bound the quantifiers by any standard m = SS . . . S(0) (which we explicitly write
out, so it’s absolute between all models of PA), we obtain an expression which our
nonstandard model believes, because the expression is absolute for PA:

(∀n < m)(∀x < m)(∀y < m)(¬⟨n, x⟩ ∈ A ∨ ¬⟨n, y⟩ ∈ B)
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This is true for every standard m, and so it must be true for some nonstandard m by
overspill, since M doesn’t know how to distinguish between standard and nonstandard
elements. If the property were only ever true for standard m, then M could identify
nonstandard m by checking whether that property held for m.

Let e be strictly nonstandard such that
(1) M ⊨ (∀n < e)(∀x < e)(∀y < e)(⟨n, x⟩ ̸∈ A ∨ ⟨n, y⟩ ̸∈ B)
where we note that this time e is not written out explicitly as SS . . . S(0) because it’s
too big to do that with.

Finally, we define our undecidable set X ⊆ N of standard naturals to be those standard
naturals x such that

M ⊨ (∃y < e)(⟨x, y⟩ ∈ A)
This is undecidable in the standard sense: there are no standard m such that {m} is
the indicator function of X. Indeed, I claim that X separates A and B. (Recall that all
members of X, A and B are standard.)

• If a ∈ A then there is some standard natural n such that ⟨a, n⟩ ∈ A; and n is
certainly less than the nonstandard e. Hence a ∈ X.

• If b ∈ B, then there is standard n such that ⟨b, n⟩ ∈ B. Then n < e, so by (1)
we have ⟨b, x⟩ ̸∈ A for all x < e. That is, b ̸∈ X.

6. Coding up X

Now if we code up X, which is undecidable, using our coding scheme
{ni : i ∈ I} 7→

∑
i∈I

2ni

we obtain some nonstandard natural; say p =
∑

x∈X 2x. Supposing the + and × relations
to be decidable, this coding is decidable. Remember that X is a set of standard naturals
which is undecidable: no standard Turing machine decides X.

But here is a procedure to determine whether a standard element i ∈ N is in X or
not:

(1) Take the ith bit of p. (This is decidable because + and × are.)
(2) Return “not in X” if the ith bit is 0.
(3) Otherwise return “is in X”.

This contradicts the undecidability of X.
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